skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bright, Victor_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-speed widefield fluorescence imaging of neural activity in vivo is fundamentally limited by fluctuations in recorded signal due to background contamination and stochastic noise. In this study, we show background and shot noise-reduced imaging of the ultrafast genetically encoded Ca2+indicator GCaMP8f in CA1 pyramidal neurons using periodic structured illumination (SI) with computational image reconstruction. We implement what we believe to be a novel reconstruction method for data acquired using periodic structured illumination, termed pseudo-HiLo (pHiLo), that combines a pseudo-widefield (pWF) reconstruction with individual SI frames to perform a HiLo reconstruction. We compare this new technique to interleaved optical sectioning structured illumination microscopy (OS-SIM) and pWF reconstruction. We quantify the performance of each reconstruction by evaluating contrast, transient peak-to-noise ratio (PNR), pairwise correlation coefficients between ΔF/F time courses extracted from individual in-focus cells, and correlation coefficients between each cell with surrounding cell-free background pixels. We additionally incorporate a self-supervised deep learning method for real-time noise suppression (DeepCAD-RT) into our data preprocessing pipeline. At 500 Hz frame rates, we demonstrate a 75% increase in PNR using the denoised pHiLo reconstruction compared to pWF. Utilizing DeepCAD-RT, we show significant PNR improvements using both structured illumination (SI) reconstruction methods with OS-SIM showing a 59% increase in PNR after denoising. Both pHiLo and OS-SIM reconstructions result in a ≈65% decrease in the mean correlation coefficient of the ΔF/F time courses between ROIs in comparison with pWF, indicating the potential to remove background fluorescent transients from out-of-focus cells. 
    more » « less
  2. We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective. 
    more » « less
  3. We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from −1.7 mm to −∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering. 
    more » « less
  4. Electrowetting-based adaptive optics are of great interest for applications ranging from confocal microscopy to LIDAR, but the impact of low-frequency mechanical vibration on these devices remains to be studied. We present a simple theoretical model for predicting the resonance modes induced on the liquid interface in conjunction with a numerical simulation. We experimentally confirm the resonance frequencies by contact angle modulation. They are found to be in excellent agreement with the roots of the zero-order Bessel functions of the first kind. Next, we experimentally verify that external axial vibration of an electrowetting lens filled with density mismatched liquids (Δρ = 250 kg/m3) will exhibit observable Bessel modes on the liquid–liquid interface. An electrowetting lens filled with density matched liquids (Δρ = 4 kg/m3) is robust to external axial vibration and is shown to be useful in mitigating the effect of vibrations in an optical system. 
    more » « less
  5. We demonstrate a method that permits wavefront aberration correction using an array of electrowetting prisms. A fixed high fill factor microlens array followed by a lower fill factor adaptive electrowetting prism array is used to correct wavefront aberration. The design and simulation of such aberration correction mechanism is described. Our results show significant improvement to the Strehl ratio by using our aberration correction scheme which results in diffraction limited performance. Compactness and effectiveness of our design can be implemented in many applications that require aberration correction, such as microscopy and consumer electronics. 
    more » « less
  6. Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging. 
    more » « less
  7. An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3°with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100–300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment. 
    more » « less